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Pattern Recognition Analysis of a Set of
Mutagenic Aliphatic N-Nitrosamines
by Stephen Nesnow,*t Robert Langenbach,* and
Marc J. Mass*

A set of 21 mutagenic aliphatic N-nitrosamines were subjected to a pattern recognition analysis using
ADAPT software. Four descriptors based on molecular connectivity, geometry and sigma charge on ni-
trogen were capable of achieving a 100% classification using the linear learning machine or iterative least
squares algorithms. Three descriptors were capable of a 90.5% and two descriptors of a 85.7% overall
correct classification. Three of the four descriptors were each capable of classifying 15 of the 16 active
chemicals while it required three of the four descriptors to classify correctly two of the five inactive
chemicals. These results are in concert with previous observations that molecular connectivity, geometry,
and sigma charge on nitrogen are powerful descriptors for separating active from inactive mutagenic and
carcinogenic N-nitrosamines.

Introduction
Structure-activity analysis is a powerful tool to study

the relationship between chemicals and their biological
effects. The elucidation of specific chemical features that
directly or indirectly result in the expression of a bio-
chemical or biological change can provide new insights
into the mechanisms of action of the chemicals as well
as the structure and function of the biological system.
We have previously reported on the development of

an innovative genetic toxicology system that deter-
mines the mutagenic activity of chemicals in mammalian
cells using a specific gene mutation at the sodium/po-
tassium-adenosine triphosphatase (ATPase) gene (1).
The system utilizes mutable Chinese hamster lung cells
(V79) that are cocultivated with primary hamster he-
patocytes serving as the metabolic activation compo-
nent. The use of intact liver cells rather than subcellular
liver enzyme fractions allows the simulation of the met-
abolic competancy of liver in vivo and as a result quan-
titative relationships observed in vivo can be reproduced
in vitro (2,3). Intact liver cells also provide a means to
study liver specific chemical toxicants (4,5). In this re-
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gard, aliphatic N-nitrosamines have been recognized as
hepatotoxic and hepatocarcinogenic in a variety of ro-
dent species including mouse, rat, hamster, and guinea
pig (6). The mechanisms by which some of these N-
nitrosamines (e.g., dimethylnitrosamine, diethylnitro-
samine) are metabolically activated to genotoxic and
carcinogenic forms are well known and involve a.-carbon
oxidation and the formation of a methyl or ethyl car-
bonium ion which alkylates DNA. However, the mech-
anism by which longer chain aliphatic N-nitrosamines
are metabolically activated and the species that interact
with DNA are still a matter of speculation. It has been
postulated that propyl N-nitrosamines are metabolized
to both a methylating and propylating species as methyl
residues in DNA (7) and propyl residues in RNA have
been isolated (8). Dipropylnitrosamine is also metabo-
lized to bis-2-oxypropylnitrosamine (7-9), which can
methylate DNA in vrivo after further metabolism (10,11).

Previous structure-activity studies on groups of car-
cinogenic N-nitrosamines by Rose and Jurs (12) using
pattern recognition and by Dunn and Wold (13,14) using
SIMCA pattern recognition have indicated a variety of
functions which participate in the separation of positive
and negative chemicals. In this study a set of related
propyl and butyl N-nitrosamines previously examined
for their ability to induce specific gene mutation in the
V79 cell-hamster hepatocyte cocultivation system (11)
were incorporated into a structure activity analysis us-
ing pattern recognition techniques. It was of interest
to relate specific physiochemical, electronic, and topo-
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graphic parameters to mutagenic activity in order to
study the mechanisms of action ofthese N-nitrosamines.

Methods

Computational Methods
The methods used were implemented through an in-

teractive computer software system known as ADAPT
(Automated Data Analysis by Pattern-recognition
Techniques), which has been reported elsewhere (15).
ADAPT is maintained on a UNIVAC 1100 mainframe
and interactively accessed via a Tektronix 4054 terminal
using PLOT 10 graphics.
The chemical structures of the compounds comprising

the data set were entered into computer disc files by
sketching the structures on a graphics display terminal
using a joystick. Each structure was modeled using a
force-field molecular mechanics model builder.

Descriptors were calculated using various algorithms
incorporated into the ADAPT system. Molecular con-
nectivity was calculated according to Kier and Hall (16),
a sigma charge according to del-Re (17), and geometric
descriptors from atomic coordinates.

Data Set
The 21 N-nitrosamines (Fig. 1) were evaluated for

their ability to mutate Chinese hamster lung cells (V79)
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in the presence of primary hamster hepatocytes from
Syrian golden hamsters according to previously pub-
lished procedures (1,2,11). The mutation locus selected
was ouabain resistance. The data for 14 of the 21 N-
nitrosamines has already been reported (11). MTBN,
2BOB, 2BHB, DEN, 3POP, 3MHP and 3MOP were
evaluated under the same conditions reported by Lan-
genbach et al. (1), and their activity (active or inactive)
ascribed from the mutation frequency [No. of ouabain
resistant mutants/106 survivors] at 0.7 mM (< 10, in-
active; > 10 active).

Results and Discussion
A set of 21 N-nitrosamines consisting of 14 propyl-

nitrosamines, 5 butylnitrosamines, dimethylnitrosa-
mine, and diethylnitrosamine evaluated for mutagenic
activity in a hepatocyte-V79 cell mutagenesis assay were
used (Table 1, Fig. 1).
Of the 21 N-nitrosamines, 16 had mutagenic activity

when tested at a concentration of 0.7 mM. Mutagenic
activity was defined as the induction of more than 10
ouabain-resistant mutants per 106 surviving V79 cells.
Five N-nitrosamines (3HPP, BAP, BHP, MTBN, and
2BHB) produced less than the above number ofmutants
and were considered inactive.
The molecular structures of the N-nitrosamine da-

taset were entered into the ADAPT pattern recognition
system and descriptors were generated. Initially a large
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FIGURE 1. Structures of 21 N-nitrosamines used in pattern recognition analysis. The numbers refer to the index numbers in Table 1.
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Table 1. N-Nitrosamines used in pattern recognition analyses.

Index Nitrosamine
Dipropylnitrosamine
Bis-2-hydroxypropylnitrosamine
Bis-2-oxypropylnitrosamine
Methylpropylnitrosamine
2-Hydroxypropyl-2-oxypropylnitrosamine
Methyl-2-hydroxypropylnitrosamine
Bis-2-acetoxypropylnitrosamine
Methyl-2-oxypropylnitrosamine
Dimethylnitrosamine
2-Hydroxypropylpropylnitrosamine
Propyl-2-oxypropylnitrosamine
Propyl-3-oxypropylnitrosamine
Methyl-3-hydroxypropylnitrosamine
Methyl-2-oxybutylnitrosamine
Methyl-3-oxybutylnitrosamine
Diethylnitrosamine
3-HvdroxvDronvlDronvlnitrosamine

Abbreviation
DPN
BHP
BOP
MPN
HPOP
MHP
BAP
MOP
DMN
HPP
POP
3POP
3MHP
2MOP
3MOB
DEN
3HPP

Mutagenicitya

:++
+

0.+

+

+

+

t-

3 Butyl-2-oxybutylnitrosamine 2BOB +
Butyl-2-hydroxybutylnitrosamine 2BHB

D Methyl-t-butylnitrosamine MTBN
M-thvl-.RnyvnQTnvinitrntImDnp qmnp

aMutagenicity determined in the hamster hepatocyte-V79 cell cocultivation system using ouabain resistance as the genetic marker.

Table 2. Descriptors used for pattern recognition analyses.a

Descriptor Overall Active class Inactive class
MOLClb 3.88 ± 1.05 3.57 ± 7.48 x 10' 4.88 ± 1.33
GEOM3C 9.32 x 10-2 ± 9.97 x 1072 6.95 x 10-2 ± 6.03 x 10-2 1.69 x 10-1 ± 1.63 x 10-'
GEOM6d 2.29 x 101 ± 1.31 x 101 2.11 x 101 ± 8.44 2.86 x 101 ± 2.31 x 101
SCSAle -1.438 x 10-1 ± 1.663 x 1073 -1.437 x 10-' ± 1.670 x l0e -1.442 x 10-1 ± 1.753 x 1073

aValues are mean ± SD.
bMOLCl is path 1 molecular connectivity for all bonds.
CGEOM3 is the smallest principal moment (Z).
dGEOM6 is the ratio of the intermediate principal moment (Y) and the smallest principal moment (Z).
SCSAl is the sigma charge on the terminal nitrogen to which the nitroso moiety is attached (*N-N=O).

number of descriptors were calculated, including mo-
lecular fragment descriptors (number and kinds of at-
oms and bond types), branching index descriptors,
molecular size and volumes descriptors, and charge dis-
tribution descriptors. In order to insure that each de-
scriptor contributed unique information about the
molecules, multiple correlation analyses of the descrip-
tors were performed. Those descriptors whose values
were highly correlated with other descriptors were
discarded.
Four descriptors (Table 2) were found to be free of

colinearity with the most correlated descriptors GEOM3
and GEOM6 exhibiting a correlation coefficient of 0.576
(Table 3). No multicolinearity was detected. MOLCl is
the path 1 molecular connectivity which is an index of
branching and a measure of the complexity of the mol-
ecule; the geometric descriptor GEOM3 describes the
smallest of the three principal moments of a molecule;
GEOM6 is the ratio between the intermediate and small-
est principal moments; SCSA1 was calculated by the
del-Re method and is the sigma charge on the terminal
nitrogen to which the nitroso moiety is attached

Table 3. Noncolinearity of descriptors.a

GEOM3 GEOM6 SCSA1
MOLCib 0.325 0.289 0.256
GEOM3 - 0.576 0.316
GEOM6 - 0.038

aValues are the cormlation coefficient (R).
bRefer to Table 2 and the Results section for a explanation of

descriptors.

Table 4. Descriptor contribution by specific exclusion analysis.a

Descriptor Active chemicals Inactive chemicals
left out misclassified misclassified % Correctb
MOLClC HPOP 3HPP 90.5
GEOM3 DPN MTBN, BHP 85.7
GEOM6 BOP MTBN, BHP 85.7
SCSAl HPOP, BOP MTBN 85.7

aCalculated by using the 21 N-nitrosamine dataset with the Linear
Learning Machine routine.
bWeighted average of percent correctly identified active and in-

active chemicals.
'Refer to Table 2 and Results section for an explanation of

descriptors.
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Table 5. Classification results with some pattern-recognition routines.

% Correct classification
Routine Active Inactive Overall
Linear learning machine 100 (16/16)a 100 (5/5)b looc
Bayes linear classifier 81.3 (13/16) 80 (A/5) 81
Bayes quadratic classifier 93.8 (15/16) 80 (4/5) 90.5
Iterative least squares 100 (16/16) 100 (5/5) 100
Linear discriminant analysis 100 (16/16) 80 (4/5) 95.2
aNumber correctly classified active chemicals/number in active class.
bNumber correctly classified inactive chemicals/number in inactive class.
cWeighted average of percent correctly identified active and inactive chemicals.

(*N-N = 0). The simple statistics of the distributions of
the four descriptors partitioned into the active and in-
active classes are given in Table 2.

Using the linear learning machine algorithm, the en-
tire dataset and four descriptors were first used to train
weight vectors for construction of a separable pattern
space. Complete convergence was attained rapidly, usu-
ally with less than 50 feedbacks using a deadzone value
of 100. Using 100 training sets of randomly generated
datasets where three of the active class and one of the
inactive class were removed, the linear learning ma-
chine algorithm achieved 97% overall correct prediction
of 17 member prediction datasets. When the prediction
datasets consisted of the four members left out of the
training dataset, the overall prediction was 80%.
The database of 21 N-nitrosamines did not contain an

equal number of active and inactive chemicals, and the
number of descriptors used to achieve separation was
only one less than the number of inactive chemicals. It
was necessary to determine if the four descriptors cho-
sen specifically classified only the inactive compounds
or if they recognized both the active and inactive com-
pounds. This possibility was assessed by excluding each
of the descriptors separately to determine the effec-
tiveness of the linear learning machine. Exclusion of
any of the four descriptors resulted in nonconvergence
of the training routine of the linear learning machine;
the weight vectors generated could not separate the
active and inactive compounds during training without
misclassification. However, the exclusion of no one de-
scriptor specifically resulted in misclassification of only
an inactive compound (Table 4). Omission of a descriptor
always resulted in an error in classifying at least one
active and one inactive N-nitrosamine. This would sug-
gest that although the number of descriptors used was
nearly equal to the number of inactive N-nitrosamines,
each descriptor did not select for a particular member
of the inactive class. Indeed, it was found instead that
in order to correctly classify the inactive N-nitrosamines
MTBN and BHP, a minimum of three and two descrip-
tors were necessary, respectively. The molecular con-
nectivity and geometric descriptors were capable of
correctly classifying 15 of 16 active chemicals, indicating
each to strongly contribute to the separation. HPOP
and BOP were the most difficult to identify as it required

three descriptors to correctly identify them (Table 4).
Utilizing four descriptors and the complete 21 chem-

ical dataset the linear learning machine achieved an
overall classification of 100% (Table 5). The iterative
least-squares algorithm was also able to attain 100%
correct overall classification in 71 iterations. A linear
discriminant function analysis program was able to gen-
erate a discriminant function that could separate the
active class correctly but misclassified one chemical in
the inactive class. Bayes' quadratic classifier achieved
a 93.8% correct classification of the active class and
incorrectly classified an inactive class member. Bayes'
linear classifier was least effective at separating either
the inactive or active class and classified 13/16 (81.2%)
of the active class correctly but missed 1/5 ofthe inactive
class.
The power of the descriptors chosen is evident when

only two are used in the linear learning machine clas-
sification of the 21 N-nitrosamine dataset. The most
accurate two descriptor set was MOLC1/GEOM3 which
gave an overall classification of 85.7%. MOLC1/GEOM6
or GEOM3/GEOM6 gave identical classifications, 80.9%.
All other combinations produced classifications of < 71%.

Earlier structure-activity analyses using 14 of these
21 N-nitrosamines indicated that molecular connectivity
path 1 calculations correlated well with the absolute
mutation frequencies of the 14 N-nitrosamines (11). Rose
and Jurs (12) also found molecular connectivity to play
an important role in the classification of a 150 N-nitro-
samine carcinogen dataset as its deletion from the de-
scriptor list reduced the overall classification from 97.33%
to 74.67%. Rose and Jurs (12) also found GEOM3 (small-
est principal moment) and sigma charge on the N-ni-
trosamine moiety to be important in their pattern
recognition analyses. Therefore, the molecular connec-
tivity, sigma charge, and geometric descriptors seem
to be a powerful combination for separating active from
inactive mutagenic and carcinogenic N-nitrosamines.

The authors thank Carol Evans for her assistance with the computer
programming and ADP support, Joye Denning for preparation of this
manuscript, and Peter Jurs, Pennsylvania State University for the
ADAPT software.
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